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Interactive View-Dependent Rendering Of Large lsosurfaces 
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Figure 1: Closeup view of an isosurface feature in the mixing interface of two gases showing the texture mapped surface, 
underlying triangle mesh, and the adaptively refined tetrahedral mesh around the region of interest. Time step = 273, lsovalue = 
206, lsosurface error = 1.5,50K Triangles, rendered at 7 frames per second. 

ABSTRACT 

We present an algorithm for interactively extracting and rendering 
isosurfaces of large volume datasets in a view-dependent fashion. 
A recursive tetrahedral mesh refinement scheme, based on longest 
edge bisection, is used to hierarchically decompose the data into a 
multiresolution structure. This data structure allows fast extraction 
of arbitrary isosurfaces to within user specified view-dependent er- 
ror bounds. ,A data layout scheme based on hierarchical space fill- 
ing curves provides access to the data in a cache coherent manner 
that follows the data access pattern indicated by the mesh refine- 
ment. 
CR Categories: 1.3.5 [Computing Methodologies]: Com- 
puter Graphics-Computational Geometry and Object Modeling 
C w e ,  surface, solid and object representations 1.3.6 [Comput- 
ing Methodologies]: Computer Graphics-Methodology and Tech- 
niques Graphics data structures and data types 

Keywords: View-Dependent Rendering, Isosurfaces, Multireso- 
lution Tetrahedral Meshes, Multiresolution Techniques 

1 INTRODUCTION 
The advent of high-performance computing has completely trans- 
formed the nature of most scientific and engineering disciplines 
making the study of complex problems from experimental and the- 
oretical disciplines computationally feasible. Traditionally, with 
smaller and simpler data sets, researchers have developed in-core 
visualization and data exploration methods that work well on small 
or medium-scale datasets. They can quickly generate isosurfaces, 
and treat each isosurface independently. However today’s impact 

{gregorski l , d u c h a i n e , p l , p i }  @llnl.gov, tkijoy@ucdavis.edu 

problems of science and engineering require a different approach 
to address the increasingly difficult problems of organization, stor- 
age, transmission, visualization, exploration, and analysis associ- 
ated with massive datasets. 

We present a new algorithm for interactively extracting and ren- 
dering isosurfaces of large data sets in a view-dependent man- 
ner. Our algorithm generates isosurfaces “on-the-fly” using a view- 
dependent error measure, a recursive tetrahedral mesh refinement 
scheme, and a unique data layout scheme suitable for out-of-core 
visualization of large datasets. 

Surface based level-of-detail techniques such as [5] and [21] ex- 
tract a coarse isosurface and iteratively build a multiresolution sur- 
face model. For large volume datasets that contain topologically 
complex isosurfaces with millions and millions of triangles, these 
techniques need to be combined with out-of-core simplification 
techniques such as those developed by Lindstrom [l I] and Lind- 
strom and Silva [13] in order to operate. In some cases, the storage 
requirements needed to extract, simplify, and visualize these sur- 
faces can actually exceed those of the volume data from which they 
are derived [2]. Interactively visualizing these types of isosurfaces 
requires algorithms such as those developed by Duchaineau et al. 
[ 1, 21, that combine multiresolution representations, compression, 
and view-dependent optimizations. Surface based techniques are 
not suitable for visualizing volumes that contain a large number of 
isosurfaces that are important to the user because they must extract 
all of the interesting surfaces which would take far too much storage 
to be practical. On the other hand volume based techniques, which 
extract and render the isosurfaces directly, do not require the pre- 
computation of selected isosurfaces, and can easily switch between 
isovalues. 

In this paper, we utilize the refinement of a tetrahedral mesh via 
longestedge bisection to build a multiresolution hierarchy of a vol- 
ume dataset. We combine coarse-to-fine and fine-to-coarse refine- 
ment schemes for this mesh to create an adaptively refinable tetra- 
hedral mesh. This adaptive mesh supports a dual priority queue 
split/merge algorithm similar to the ROAM system [3] for view- 
dependent terrain visualization. It has fast coarsening and refine- 
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Figure 3: Parent diamonds: Phase 0 parents are phase 2 diamonds from the level L - 1, phase 1 parents are located at cube centers, and phase 
2 parents are located at face centers. The split edge is (SVo, SV1) (shown in green), the split vertex is S V  (blue), and the parents are shown 
as Po, PI, Ps, and Pa (red). The magenta tetrahedron is a tetrahedron in diamond PO. The shaded triangle shows how it is split into two 
phase 0 tetrahedra. 

Phase 1 children 
u 

Phase 2 children 

Figure 4 Child diamonds: Phase 0 children are located on the faces of a cube, phase 1 children are located on the centers of the edges of the 
face containing the split edge, and phase 2 children are the phase 0 diamonds from level L + 1 that touch the diamond‘s split edge. 

Figure 2 Three phases of refinement for a single tetrahedron of the 
initial mnfiguration. 

3.1 Diamonds 
Tetrahedra are grouped into diamonds to simplify the refinement 
process and to ensure continuity of isosurfaces generated from the 
mesh. When a tetrahedron is split, all the tetrahedra that share its 
split edge must also be split. A group of tetrahedra that share a 
split edge is called a diamond. The split edge and split vertex of a 
diamond are defined as the common split edge and split vertex of 
its tetrahedra. All diamonds in the mesh can be uniquely identified 
by their split edge or split vertex. Phase 0, phase 1, and phase 2 
diamonds are shown in Figures 3 and 4. Each point in the dataset, 

Table 1: Number, phase, and level of tetrahedra, parents, and chil- 
dren for the three different diamonds. L is the level of the diamond. 

except for the comer points of the original cube, corresponds to the 
split vertex of one diamond because each point is introduced by the 
splitting of a diamond. By grouping tetrahedra into diamonds, we 
can easily locate all of the tetrahedra around a split edge. Splitting 
a diamond is equivalent to splitting all of the tetrahedra in the di- 
amond. All tetrahedra within a diamond have the same level and 
phase. Table 1 lists the number of tetrahedra, their phase, and level 
for each diamond. 

The type of a diamond is determined by its split edge (SVo, 
SVl), where SVo and SVl are the vertices on the split edge. Start- 
ing from the initial configuration of six tetrahedra in a cube, there 
are 26 different direction vectors (i.e. diamond types) for the split 
edge; there are 8 directions for the phase 0 diamonds, 12 for the 
phase 1 diamonds (4 each on the XU, XZ, and YZ planes), and 6 
for the phase 2 diamonds. The type of a diamond is used to effi- 
ciently encode the structure of the mesh (Section 6) including the 
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location of parent and child diamonds (Section 3.2). 

3.2 Parent And Child Diamonds 
Given a diamond D. the parents of D are the diamonds that must be 
split to create D’s tetrahedra. Figure 3 shows the parents for each 
diamond. The diamonds that are created when D is split are called 
D’s children. Figure 4 shows the children for each diamond. In 
these figures, a diamond is indicated by its split vertex. The parent 
and child information is summatized in Table 1. 

4 SPLIT/MERGE REFINEMENT 
The tetrahedral mesh supports the dual queue splitlmerge re- 
finement strategy similar to that described by Duchaineau et al. 
[3]. This strategy provides more frame-to-frame coherence than 
a coarse-to-fine only algorithm. It allows us to control the triangle 
count per frame, and to effectively cache previously computed ge- 
ometry to minimize expensive interpolation calculations. In most 
interactive applications, the viewing position does not change sig- 
nificantly between consecutive frames. In frame i + 1, many dia- 
monds from frame i will have a viewdependent error that is still 
within the error tolerance. These diamonds can be reused in frame 
i + 1. A small fraction of the diamonds must be split or merged 
to satisfy the e m  tolerance. By starting the refinement process for 
frame i + 1 with the mesh from frame i instead of the base mesh, 
fewer splits and merges are performed. 

The current mesh is a set of tetrahedra that approximates the 
volume dataset to within a certain view-dependent error bound. The 
mesh is generated using two priority queues. The split queue holds 
the diamonds containing the tetrahedra of the current mesh. The 
merge queue holds the diamonds that have been split and whose 
children have not been split (Le. diamonds with children but no 
grandchildren). 

At frame 0. the split queue is initialized with the base configu- 
ration of six tetrahedra (the mot diamond), and the merge queue is 
empty. At each frame. given a view-dependent error tolerance E, 
the following steps are taken: 

1. Diamonds not within the view frustum are marked as invisible 
and diamonds that do not contain the isosurface are marked 
as empty; they are assigned a view-dependent error of zero. 
Mewdependent errors are recomputed for all other diamonds 
in the split and merge queues. 

2. Diamonds in the split queue whose error is greater than E are 
split. Diamonds in the merge queue whose error is less than E 
are merged. Invisible and empry diamonds in the split queue 
are never split. In the merge queue, they are the first diamonds 
to be merged. 

3. The refinement process is stopped when all diamonds in the 
split queue have an error below E and all diamonds in the 
merge queue have an e m  above E. or when the time allowed 
for processing the current frame has elapsed. 

4. The isosurface is extracted from the tetrahedra that belong to 
the visible, non-empty diamonds in the split queue. 

A diamond D is split by splitting all of its tetrahedra, and insert- 
ing the child tetrahedra into the split queue. A tetrahedron is placed 
into the split queue by creating an entry for its diamond and adding 
the tetrahedron to the diamond. There is only one entry for a dia- 
mond in the split queue. When some of the tetrahedra in a diamond 
do not exist (i.e. they are not in the current mesh), it is necessary 
to create them before the diamond can be split. This situation is 
shown in 2D in Figure 5. The tetrahedra are created by splitting 

the parents of D that have not been split. When all the parents and 
tetrahedra of D have been split, D is removed from the split queue 
and added to the merge queue. 

Figure 5: Diamond DO has two triangles in the mesh. Diamond D1 
has two triangles, one of which in the mesh. The triangle not in the 
mesh is shown with the dashed lines. This is a 2D analogy of the 
3D tetrahedral mesh. 

Merging a diamond is done by merging all of its tetrahedra, and 
adding them to the split queue. A tetrahedron is merged by remov- 
ing its two children from the split queue. A tetrahedron is removed 
from the split queue by locating its diamond’s entry in the split 
queue and removing it from the diamond. When a tetrahedron is 
removed from the mesh, its diamond is checked to see if all the 
tetrahedra of the diamond have been removed from the queue. If 
so, the diamond is removed from the split queue. Lastly, the dia- 
mond‘s parents are checked to see if they can be added to the merge 
queue. A diamond can be added to the merge queue only if all of 
its children are in the split queue. 

4.1 Modifying The lsovalue 
When the isovalue is changed by the user, the new isosurface can 
be extracted by starting at the root diamond or starting from the cur- 
rent mesh. In the first case, the split and merge queues, hash tables, 
and isosurface are invalidated and initialized with the root diamond. 
The split/merge refinement is then started from this initial configu- 
ration. In the second case, the split queue, merge queue, and hash 
tables remain the same, and the old isosurface is thrown away. The 
diamonds in the split and merge queues are checked to determine 
if they contain the new isovalue. Diamonds that do not contain the 
isovalue are marked as empty and given an approximation error of 
zero. Isosurface errors are computed for those diamonds that con- 
tain the new isovalue. The splitlmerge refinement continues from 
this new configuration. Diamonds that contain the new isosurface 
will be refined if their error is too large and coarsened if their error 
is too small. Diamonds that contained the old isosurface, but do 
not contain the new isosurface. will be merged because they are no 
longer needed to represent the volume. The effectiveness of both 
of these methods depends on the locality of the old and new isosur- 
faces in the mesh hierarchy. Starting from the current configuration 
makes sense if they are close together, and starting from the top 
makes sense if they are far apart. 

5 ERROR METRICS 
Each diamond in the mesh has an associated approximation error, 
isosurface error, and view-dependent error. The approximation er- 
ror e, for a tetrahedron T is the maximum difference between the 
linear approximation over T that interpolates the values at T’s ver- 
tices and the actual data values for the points inside T and on its 



ment operations which allow for localized, incremental mesh up- 
dates, strict frame-to-frame triangle counts, progressive improve- 
ments of mesh quality, and guaranteed frame rates. The refinement 
scheme is coupled with a data storage scheme which aligns the data 
on disk and in main memory with the access pattern dictated by 
the mesh refinement. Sets of tetrahedra that share a common re- 
finement edge are grouped into an aggregate structure called a dia- 
mond. Diamonds, as opposed to tetrahedra, function as the unit of 
operation in the mesh hierarchy and simplify the process of refining 
and coarsening the mesh. 

At runtime, the split/merge refinement algorithm is used to cre- 
ate a lower resolution dataset that approximates the original dataset 
to within a given error tolerance. The error tolerance is a measure 
of how much an isosurface, extracted from the lower resolution 
dataset. deviates from the finest level isosurface. The e m  toler- 
ance is measured in pixels on the view screen. The lower resolution 
dataset is a set of tetrahedra, possibly from different levels of the 
hierarchy, that approximates the volume dataset to within this iso- 
surface error tolerance. This set of tetrahedra is free from cracks 
and T-intersections, and it defines a piecewise linear approximation 
of the original data. The isosurface is extracted from the tetrahedra 
in this lower resolution representation using linear interpolation. 

In a preprocessing phase, we compute general information for 
each diamond that is used to drive the runtime mesh refinement. 
The following information is computed for the diamonds (Section 
3.1): 

1. The isosurface approximation error of the region enclosed by 
the diamond. (Section 5 )  

2. The min and max data values within the diamond including 
the diamond's boundary. The precomputed midmax ranges 
are used to quickly cull regions of the dataset that do not con- 
tain the isosurface. 

3. The gradient vector at the center point of the diamond. The 
center point is also called the splir vertex of the diamond. 
(Section 3.1) The precomputed gradient vectors are used to 
shade the isosurface using texture mapping. 

The remainder of our paper is structured as follows: Section 2 
reviews related work. Section 3 reviews longest edge bisection and 
introduces purenr and child relationships for refining and coarsen- 
ing the mesh. Section 4 describes the split/merge algorithm for re- 
fining and coarsening. Error metrics are described in Section 5.  In 
Sections 6 and 7. we describe the data structures used to implement 
the split/merge refinement, and give an efficient, compact method 
to encode the mesh's structure. In Section 8, we discuss our data 
layout scheme. Our results are shown in Section 9. 

2 PREVIOUS WORK 
The refinement of a tetrahedral mesh via longest edge bisection is 
described in detail in several papers. In Zhou et al. [23], a fine-to- 
coarse merging of groups of tetrahedra is used to construct a multi- 
level representation of a dataset. Their representation approximates 
the original dataset to within a specified tolerance and preserves the 
topology of the finest level mesh. For larger datasets, this fine-to- 
coarse strategy is not practical because storing the finest level mesh 
would require too much memory. 

An improved algorithm for preserving the topology of an ex- 
tracted isosurface is presented by Gerstner and Pajarola [8]. This 
algorithm is combined with a coarse-to-fine splitting of tetrahedra 
to extract topology preserving isosurfaces or to perform controlled 
topology simplification. Rendering of multiple transparent isosur- 
faces and parallel extraction of isosurfaces are presented by Gerst- 
ner [61 and by Gerstner and Rumpf [7]. Both of these algorithms 

extract the isosurfaces from the mesh in a coarse-to-fine manner. In 
Roxborough and Nielson [20], the coarse-to-fine refinement algo- 
rithm is used to model 3-dimensional ultrasound data. The adaptiv- 
ity of the mesh refinement is used to create a model of the volume 
that conforms to the complexity of the underlying data. 

View-dependent extraction of isosurfaces utilizes multiresolu- 
tion representations to extract surfaces that satisfy certain visual 
requirements. These requirements are usually based on the distance 
of the surface from the viewpoint, the position of the surface relative 
to the view-frustum, and the occlusion of the surface. Duchaineau 
et al. [3] control refinement using the screen space projection error, 
view-frustum culling, and line of site corrections. Occlusion culling 
supplements view-frustum culling by finding areas within the visi- 
ble region that cannot be seen. In Livnat and Hansen [ 151, a hierar- 
chical visibility test is used to determine regions of the volume that 
are occluded. The volume is decomposed using an octree, and the 
visibility test is performed using hierarchical tiles based on cover- 
age masks (see Greene [9]). A shear warp transformation is used 
to perform the screen space projection. Their visibility algorithm 
requires that the octree be traversed from front to back. Zhang et al. 
[22] divide a large dataset into a set of independent blocks. They 
use ray casting from the viewpoint into the volume to determine a 
subset of these blocks that are occluders. These initial occluding 
blocks are rendered to create an occlusion mask that shows which 
screen pixels are covered. The remaining blocks are traversed and 
rendered if they are not completely occluded. Unlike [15]. this last 
rendering step does not traverse the blocks in a front-to-back order. 
This ray tracing approach is also used in [ 141 to find an initial set of 
voxels from which to propagate the isosurface. The algorithm starts 
extracting the isosurface from these seed sets, and detects when the 
surface folds back on itself and becomes occluded. In our algo- 
rithm, we use the screen space projection error of the isosurface and 
view-frustum culling to control the view-dependent refinement. 

In this work, we are focused on developing algorithms for level- 
of-detail based, interactive exploration of large, complex isosur- 
faces. Surface based methods such as [2, 211 construct level- 
of-detail surface models that are suitable for interactive view- 
dependent rendering. Volume based techniques such as [IS, 221 
speed up the search for cells that contain the isosurface and cells 
that do not need to be rendered, but they extract the isosurface from 
the finest level cells. Our algorithm differs from these approaches 
by utilizing a level-of-detail volumetric model which extracts the 
isosurface from coarser representations of the volume that meet 
certain requirements. Isosurface extraction techniques based upon 
level-of-detail allow the isosurface to be progressively refined over 
time, see for example [4, 181. Visualizing large, complex isosur- 
faces often requires the ability to fly through the dataset and closely 
inspect areas of interest. Level-of-detail methods that support strict 
triangle counts per frame for efficient rendering, progressive im- 
provement of mesh quality to provide guaranteed frame rates, and 
coherent access to data to minimize memory faults are well suited 
to this task. 

3 LONGEST EDGE BISECTION 

In this section we review longest edge bisection and establish ter- 
minology. In this scheme, a tetrahedron is described by a level and 
aphuse, with 3 phases at each level. The bisection begins at level 0, 
phase 0 with an initial configuration of a cube divided into 6 tetra- 
hedra around a major diagonal. Figure 2 illustrates the three phases 
of the refinement process. After three refinements, the level is in- 
cremented by 1. After n refinements. the phase is n mod 3 and the 
level is [n/3].  The split edge of a tetrahedron is its longest edge. 
In each phase, a tetrahedron is subdivided into two children at the 
midpoint of the split edge. This midpoint is called the splir vertex. 



boundary (i.e. faces, edges, and vertices). The approximation error 
for a diamond D is the maximum of the approximation errors of its 
tetrahedra. Leaf tetrahedra and leaf diamonds have an approxima- 
tion e m  of zero. 

a b  

Figure 6 Isosurface e m  calculation in 1D. 

The isosurface error of a tetrahedron T is the maximum deviation 
of an isosurface generated using the scalar values at the vertices of 
T from the true isosurface passing through T. This calculation is 
illustrated in Figure 6 for the one-dimensional case. The original 
function is f(z) and it is approximated by L(z ) .  The upper and 
lower bounds on the approximation, given by the approximation 
error e,, are a~(z) and a&). For a given function value y. the 
isocontour using L(z) occurs at point a where y = L(a),  while the 
true isocontour using f(z) occurs at the point b where y = f ( b ) .  
The error in the isocontour is given by: 

(1) ei., = la - bl 
An upper bound u for the isosurface error can be computed by: 

= ea /k  1 e<,,, (2) 

where k is slope of the linear approximation L. As f approaches 
a vertical line the slope of L increases, and f is approximated with 
increasing accuracy by L. As the slope o f f  decreases, the isocon- 
tour approximation a and the true isocontour b can be far apart even 
if e, is small. In higher dimensions, the slope of the approximation 
translates to the magnitude of the gnuhent. In three-dimensions, 
this is the gradient of the field through a tetrahedron as given by 
the linear function that interpolates the values at the tetrahedron's 
vertices. The isosurface error is clamped at the physical size of the 
tetrahedron because the isosurface drawn through a tetrahedron can 
never be outside the tetrahedron's boundaries. The isosurface error 
for a tetrahedron T is given by: 

The isosurface error ei.,(D) for a diamond is: 

ei,,(D) = max(ei.o(T),VT E D).  

(3) 

(4) 

The view-dependent error of a diamond is the projection of its iso- 
surface error onto the view screen. This projection is done by creat- 
ing a sphere at the diamond's split vertex of radius a#,( D )  and pro- 
jecting this sphere onto the view screen. The size of the projected 
sphere (i.e. width or height in pixels) is the view-dependent error. 
Details on view-dependent error mehics can be found in Hoppe 
[lo]. Lindstrom and F'ascucci [121, and Luebke and Erikson [16]. 
All of these error mehics are easily incorporated into our refinement 
Strategy. 

6 MESH ENCODING 
The mesh structure can be encoded in a very compact manner as- 
suming that the data points lie on a (2" + 1) x (2" + 1) x (2" + 1) 
grid. In this case, the offsets, relative to the split vertex of the di- 
amond, to compute the tetrahedron vertices. parents, and children 
of a diamond are all powers of two. Data that do not lie on such a 
grid can either be resampled to lie on a grid of the proper size or 
embedded in a virtual grid of the proper size. 

Since each data point corresponds to a diamond, we represent a 
diamond using an (i, j ,  k )  index. This index corresponds to the in- 
dex used to access the precomputed diamond information and data 
values if they were stored in a C-style 3-dimensiond array. The ver- 
tices defining the split edge of a diamond are encoded in a single 
byte as an offset vector from the split vertex. For example, the split 
edge with SVO = (64,64,0) and SV1 = (64,0,64) has the vec- 
tor (0, -64,64) and split vertex (64,32,32). Dividing this vector 
by 64 yields (0, -1,l) .  These values are stored as 2 bit quantities 
in a single byte. SVO and SV1 are computed by rescaling the vec- 
tor and addingkubtracting it from the split vertex. In this example, 
(0, -1,1) is rescaled to (0, -32,32). The rescaling factor is easily 
determined from the level of the diamond. For a mesh with 1 levels, 
the scaling factor for a diamond at level j is given by 2l-j-l. The 
split edge encodings are stored in a lookup table and accessed at 
runtime based upon the type of the diamond Since a diamond is 
identified by its split vertex, the vertices on the split edge can be 
computed by knowing the diamond's type and level. The parents, 
tetrahedra, and children of a diamond are encoded and stored in the 
same manner as the split edge. For any diamond, the ( i ,  j ,  k) index 
for a parent, child or vertex of a tetrahedron can be computed from 
the diamond's split vertex and the proper encoding. There is one 
set of encodings for each of the 26 types of diamonds. 

Encoding the mesh in this manner allows us to quickly compute 
the (i, j ,  k) index of a diamond's parents and children. Instead of 
storing pointers to the parents and children of a diamond, we store 
all of the diamonds in a hash table and use the (i, j ,  k )  index of the 
split vertex to locate a diamond. In the case of a phase 2 diamond, 
this saves twelve pointers (4 parents, 8 children) or 48 bytes per 
diamond. Since each (i, j ,  k )  index corresponds to a data point, we 
can quickly compute indices for the vertices of a tetrahedron and 
use them to get the data values needed to extract the isosurface. 

7 DATA STRUCTURES 
We precompute the isosurface approximation error, min and max 
scalar field values, and gradient vector at the split vertex for each 
diamond in the hierarchy. Gradients can be computed at runtime 
and stored in a hash table; however, our data layout algorithm (Sec- 
tion 8) makes computing gradients via central differences expensive 
and so the gradients are precomputed. Assuming byte scalar field 
data, floating point errors and floating point gradient c o y n e n t s ,  
18 additional bytes are required per input value. A 1024 (1 Gb) 
dataset would be inflated to an enormous 19 Gb dataset. 

In order to reduce the size of the precomputed data, the isosur- 
face errors are compressed on a logarithmic scale on a per-level ba- 
sis and represented in six bits. The gradient vectors are quantized 
on a unit cube using fourteen bits. In addition, we use an iterative 
relaxation process to smooth the gradient vectors which are com- 
puted directly from the byte datasets we use. The min and max 
values for a diamond D are compressed in relation to a diamond S 
that completely contains D. A diamond S contains a diamond D if 
the polyhedron for D is completely enclosed by the polyhedron for 
S. The tetrahedra created by recursively refining D's tetrahedra are 
all contained within S's polyhedron. Either of the two diamonds 
whose split vertices are the vertices of D's split edge can be used 
for S. This is illustrated in Figure 7. 
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Figure 7: The minlmax values of a diamond are encoded relative 
to the min and m values of an enclosing diamond using 4 bits (2 
each for min/max) to encode 0/8, 1/8, 1/4. or 1/2 of the enclosing 
interval. m e  offset 3 8  is not encoded.) In this example min = 118. 
max = 1/4. 

Using these data structures, the precomputed information for 
each diamond is stored in three bytes. A 1 Gb dataset is inllated 
to 4 Gb instead of 19 Gb. Emr values and gradients are found at 
runtime using lookup tables. Since the e m  are encoded in 6 bits, 
the table for the error values contains 2' x n floating point values 
where n is the number of levels in the mesh. For a 5123 dataset, n 
equals 9. The gradient table contains 3 x 214 floating point values. 

The split and merge queues are implemented as hash tables using 
a fixed number of buckets and chaining to handle collisions. Each 
bucket corresponds to a range of the projected screen space error as 
measured in pixels. Each entry in the bucket corresponds to a dia- 
mond whose screen space error falls within the bucket's range. The 
buckets are not sorted internally by error value. Hash tables can be 
used instead of priority queues because it is not necessary to split 
the diamond in the split queue with the highest error, or to merge 
the diamond in the merge queue with the lowest error. Instead it 
is sufficient to split a diamond whose error is greater than the cur- 
rent tolerance and to merge a diamond whose error is less than the 
current tolerance. Hash tables with 0(1) operations provide bet- 
ter performance than a priority queue with O(1og n) operations. A 
separate hash table, the queue hash table, is used to map diamond 
indices to their entries in the queue. There is one hash table for the 
split queue and one hash table for the merge queue. This second 
hash table is necessary because the split and merge queues are or- 
dered by viewdependent error. In order to quickly locate a specific 
diamond in either queue, we need to be able to access the queue 
based upon the (a, j ,  k) index of the diamond. Accessing the dia- 
monds in the queues based on viewdependent error would require 
computing the viewdependent e m ,  locating the bucket that the 
diamond is in, and then traversing the bucket to get the appropriate 
entry. 

Precomputed 
Diamond Info 
n 

Diamond Index ( i j ,k )  
1 

Figure 8: Relationship between precomputed data, queue entries, 
and queue hash table. 

The data structures are illustrated in Figure 8. The hash table 
maps a diamond index to an entry in the queue. The diamond in- 
dex associated with the queue entry maps back to the precomputed 
diamond i n f o d o n  and the same hash table entry. When a tetra- 
hedron is added or removed from the mesh, its diamond's index is 
used to locate the corresponding entry in the split queue via the split 
queue's hash table. Each diamond in the split queue contains flags 
indicating which of its tetrahedra are actually in the current mesh. 
The reason for these flags is shown in Figure 5. Each bucket entry 
in the split and merge queues stores the diamond's level, (i, j ,  k) in- 
dex, isosurface and viewdependent errors, and invisib& and empty 
bits. 

When a tetrahedron is added to the split queue. the isosurface 
passing through it is computed and s t o d  in the geometry cuck. 
The geometry is cached in an array so that it is in a contiguous 
region of memory. New geometry is appended to the end of the 
array. Geometry is removed from the cache by replacing the re- 
moved geometry with geometry at the end of the array. A hash 
table is used to map a diamond to the geometry cache entries asso- 
ciated with its tetrahedra. This caching method duplicates normals 
and vertices along edges. Its advantage is that it has better mem- 
ory coherence than hash table based caches which store the vertices 
and normals on a peredge basis (see Gersmer and Rumpf [7]). On 
newer graphics hardware, storing the geometry in a contiguous re- 
gion of memory allows one to stream the data from memory to the 
graphics card for improved rendering performance. The mesh is 
drawn by traversing the geometry cache. 
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Figure 9 New data points required at each refinement level in 2D. 
The arrows indicate the wrapping of data values assuming periodic 
boundary conditions. 

8 MEMORY LAYOUT 

When visualizing very large datasets. memory performance is a key 
bottleneck that must be overcome to achieve interxtivity. In order 
to improve cache performance and effectively utilize the available 
memory bandwidth, we arrange our data on disk and in memory in 
a hierarchical z-order layout which follows the data ordering indi- 
cated by the mesh refinement. 

Figure 9 shows how the mesh refinement algorithm accesses the 
data. Starting with the root configuration in the upper left, the dots 
indicate which data points are introduced at each refinement step. 
The numbers indicate the order in which the points are stored in a 
one-dimensional array. The dataset is stored first by level-ofdetail 
(i.e. quadtree or octree level) and then by geometric proximity 
within each level. This layout scheme assumes that the dataset ex- 



I 

Preprocess 

Processors Memory Usage (Mb) 
RlOK (250 Mhz) Physical Total 

8 800 800 I Runtime I 1 150 690 I 

Time(s) 
0.07 
0.06 
0.01 

Operation # Elements EledSec 
CullPriority 49K - 77K 700K - 1.1M 

Drawing 63K 1.05M 
SulitlMeree 10-40 1000-4000 

Table 3: Timings results for algorithm sections. 

hibits periodic boundary conditions which is a valid assumption for 
the datasets that we are working with (i.e. for a 12g3 dataset indices 
0 and 128 map to the same location). This data layout scheme and 
its performance benefits are detailed in [12] and [19]. Storing the 
data in this manner improves the coherence of the data access which 
is essential when working with large datasets. The original dataset 
and the information computed in the preprocessing phase of our al- 
gorithm are stored on disk in this manner. The data is mapped from 
disk to main memory at runtime using the Unix mmap command. 
The mmap command establishes a mapping between a process’s 
address space and a virtual memory object represented as a disk 
file. It provides us with a basic out-of-core paging algorithm. This 
allows us to keep in memory the data that is currently being used 
by the splitlmerge process and the isosurface extraction process. 

9 RESULTS 

We have tested our methods on an SGI Onyx with 44 250 MHZ 
RlOK processors and IR2 graphics boards. At runtime the algo- 
rithm uses one processor and one graphics pipe. The preprocessing 
was done in parallel on the same machine. Memory and processor 
usage for the preprocessing and runtime phases is shown in Table 
2. Resident memory refers to the actual physical memory used. It 
includes memory used by the data structures and by the regions of 
the dataset that have been paged in from disk. Total memory refers 
to the address space currently assigned to the program. Preprocess- 
ing a 5123 dataset takes 3.1 hours, and the final dataset size is 537 
Mb. 

Our test dataset is the Gordon Bell Prize winning simulation of 
a Richtmyer-Meshkov instability in a shock tube experiment [17]. 
The full resolution dataset consists of 274 time steps with each time 
step divided into a grid of 8 x 8 x 15 bricks where each brick consists 
of 256 x 256 x 128 byte data values for a total time step resolution of 
2048 x 2048 x 1920 byte data values. A full resolution isosurface of 
the mixing interface produces a mesh with 460 million triangles. In 
our examples, we are looking at isosurfaces of entropy values cal- 
culated as two fluids mix over time. Our examples are from 5123 
chunks cropped from the full resolution dataset. Figure 10 shows 
how the isosurface refines around the viewpoint and coarsens away 
from the viewpoint. Figure 1 shows a closeup view of a feature in 
the mixing interface at time step 273. The ability to zoom in on re- 
gions of the dataset and refine the isosurface allows one to closely 
inspect the features of the mixing process. These images show how 
the mesh adaptively refines around the viewpoint. Figure 11 shows 
an isosurface similar to the one shown in Figure 1 at different screen 
space errors. The isosurface representing the mixing interface con- 
tains a large number of topological components and small features. 
In the two lower resolution surfaces, the small feature in the top left 
is not preserved. 

Table 3 shows the performance measurements for the visibil- 
ity culling and priority recomputation, splitlmerge refinement, and 
rendering sections of our algorithm. The time for culling and pri- 
ority recomputation depends on the number of computations and 
the memory performance of the hash table. We can perform about 
700K - 1.1M computations a second. Rendering at 7 FPS (0.14s per 
frame) and allowing at most half of the frame time for culling and 
priority recomputation, we are allowed 49K - 77K computations 
per frame. Limiting the triangle count in the extracted isosurface to 
around 50K triangles gives us roughly 65K - 85K diamonds in the 
queues. We recompute the visibility information for all diamonds 
in the split and merge queues, and we recompute the priorities for 
all visible, non-empty diamonds in the queues. This is an expensive 
operation and can be improved using hierarchical, deferred priority 
recomputation. The splitlmerge performance is determined by the 
number of recursive splits and the coherency of the data access. 
Merges only have to look at children and parents and perform O( 1) 
lookups to find them. Splits look at children and parents and may 
have to look at O(n) diamonds where n is the number of levels in 
the tree. To test the splitlmerge performance, we fixed the time for 
doing splits and merges to 0.01s. The algorithm performs around 
1000 - 4000 updates per second or 10 - 40 updates per frame. The 
time for drawing depends on the number of elements drawn. In im- 
mediate mode, the SGI graphics system can draw 50K triangles at 
a rate of 1.05M triangles per second which is about 20 frames per 
second. At 7 FPS with 0.06s for drawing, this gives us at most 63K 
triangles per frame. These restrictions on the triangle count, queue 
sizes, and mesh updates per frame, allow us to render 5 - 7 frames 
per second or about 250K - 350K triangles per second. 

Figure 10: Closeup view of a mixing feature. Time Step = 273, 
Isovalue = 186, Isosurface error = 0.5. On the right, a zoomed out 
view shows the portion of the isosurface culled by the view frustum. 

10 CONCLUSIONS 
We have presented an algorithm for quickly extracting and render- 
ing isosurfaces from large volume datasets. Our algorithm uses 
a multi-resolution tetrahedral mesh based on edge bisection, ex- 
tending it to support adaptive refinement and coarsening. We have 
shown an efficient way to encode the tetrahedra, parents, and chil- 
dren of the mesh structure so that the mesh can be represented com- 
pactly and computed using efficient integer operations. The imple- 
mentation of the dual queue splitlmerge algorithm utilizes this new 
encoding of the mesh through the addition of a queue hash table 
which enables the queues to be accessed by view-dependent error 
and diamond indices. Our algorithm is very extensible and easily 
integrates with other optimizations such as deferred priority recom- 
putation, front-to-back traversal for transparent rendering and oc- 
clusion culling, topology preservation and simplification, and par- 
allelization. 

The size and complexity of datasets such as the Richtmyer- 
Meshkov simulation present great visualization challenges. Our 
future work is focused on extending our algorithms to be able to 
handle the full size datasets from these simulations in interactive 



Figure 11: Isosurface with varying screen space error at Time Step = 273, Isovalue = 213. From left to right: J3-m = 0.56,95K Triangles; 
Error = 1.7,30K Triangles; Error = 2.7, 13K Triangles. 

applications. Runtime processing of these massive datasets requires 
parallelization of both the refinement process and the rendering pro- 
cess. This can either be done on large shared memory machines or 
large clusters of commodity workstations. Both techniques require 
efficient data paging schemes to move data between processors and 
machines. The visualization of time varying data presents an even 
bigger challenge for these large datasets. Extending our algorithms 
to time varying data quires time varying encoding and compres- 
sion of the data as well as fast decoding and decompression to up- 
date the mesh as quickly as possible. 
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